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Metastasis is the major cause of cancer death. An increased level
of circulating tumor cells (CTCs), metastatic cancer cells that have
intravasated into the circulatory system, is particularly associated
with colonization of distant organs and poor prognosis. However,
the key factors required for tumor cell dissemination and coloniza-
tion remain elusive. We found that high expression of desmoglein2
(DSG2), a component of desmosome-mediated intercellular adhe-
sion complexes, promoted tumor growth, increased the prevalence
of CTC clusters, and facilitated distant organ colonization. The dy-
namic regulation of DSG2 by hypoxia was key to this process, as
down-regulation of DSG2 in hypoxic regions of primary tumors led
to elevated epithelial−mesenchymal transition (EMT) gene expres-
sion, allowing cells to detach from the primary tumor and undergo
intravasation. Subsequent derepression of DSG2 after intravasation
and release of hypoxic stress was associated with an increased abil-
ity to colonize distant organs. This dynamic regulation of DSG2 was
mediated by Hypoxia-Induced Factor1α (HIF1α). In contrast to its
more widely observed function to promote expression of hypoxia-
inducible genes, HIF1α repressed DSG2 by recruitment of the poly-
comb repressive complex 2 components, EZH2 and SUZ12, to the
DSG2 promoter in hypoxic cells. Consistent with our experimental
data, DSG2 expression level correlated with poor prognosis and re-
currence risk in breast cancer patients. Together, these results dem-
onstrated the importance of DSG2 expression in metastasis and
revealed a mechanism by which hypoxia drives metastasis.
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Breast cancer is the most common cancer of women world-
wide. With early detection and advances in therapeutic

strategies, the 5-y relative survival rate for all stages combined is
higher than 90% (according to the Surveillance, Epidemiology,
and End Results (SEER) database maintained by the US Na-
tional Cancer Institute). However, metastasis is now the major
cause of breast cancer death (1), as the survival rate for women
with metastasized breast cancers remains below 30%. Thus,
identification of key factors in breast tumorigenesis and metas-
tasis is important to identify therapeutic targets and strategies to
improve prognosis.
Metastasis is a complex process involving tumor cell intrinsic

alterations and extrinsic interaction with the microenvironment to
select for highly aggressive cancer cells. Hypoxia, a key microen-
vironmental factor in solid tumors, activates hypoxic signaling to
increase plasticity and promote epithelial−mesenchymal transition
(EMT) to drive the first step of metastasis (2). High plasticity
allows cancer cells to disseminate from the primary site and
intravasate into the circulatory or lymphatic system. Most of these
circulating tumor cells (CTCs) die in circulation, and only a small
fraction of CTCs are able to survive and eventually colonize dis-
tant organs (3, 4). Recent evidence has shown that CTC numbers
can be used as an independent predictor for survival in patients
with metastatic cancers (5–7). Further improvement in CTC

detection methods led to identification of CTC clusters and the
finding that clustered CTCs exhibit epithelial/mesenchymal hybrid
(partial EMT) phenotype which allows them to move collectively
(8). Collective movement makes these cancer cells more apoptosis
resistant, more capable of avoiding immune surveillance, and better
able to colonize distant organs. Importantly, CTC clustering ability
has been positively correlated with poor clinical outcome (9–12).
While a few factors that promote CTC cluster formation have been
identified (9, 13–15), the key mechanisms that allow CTC clusters to
survive in the vascular system and allow them to more efficiently
metastasize than unclustered CTCs remain elusive.
Cell adhesion proteins play critical roles in intercellular con-

tacts and epithelial tissue dynamics. Deregulation of cell adhe-
sion molecules contributes to tumor metastasis (16, 17). Among
cell adhesion molecules, desmosomes are of particular interest
for cancer biology. Desmosomes form patch-like adhesion
structures that mark the intercellular midline and connect to the
intermediate filament cytoskeleton to maintain cell−cell adhe-
sion and tissue integrity (18). The desmosome is a protein
complex containing two transmembrane proteins, desmocollin
(DSC1 to DSC3) and desmoglein (DSG1 to DSG4), as well as
adaptor proteins, plakoglobin and desmoplakin, that bind in-
termediate filaments (19). Among the human DSGs, DSG1 and
DSG3 expression is mainly restricted to stratified squamous
epithelia (20). DSG2 is the most ubiquitously expressed isoform,
including mammary tissue, and is a key factor for cell
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aggregation and oncogenic function in lung and prostate cancers
(20–23). However, whether DSG2 is involved in CTC clustering
and metastasis remains unknown.
We found that tumor growth and colonization were promoted

by DSG2 expression at both the primary site and distant organ.
High DSG2 expression in the primary tumor was associated with
increased prevalence of CTC clusters. However, HIF1α-mediated
suppression of DSG2 under hypoxia was required for cancer cell
invasion and migration. Once in the vascular system, the cancer
cells were released from hypoxic stress, and DSG2 expression was
derepressed. This DSG2 reactivation was essential for CTCs to
colonize distant organs. Consistent with these experimental ob-
servations, clinical data indicated that breast cancer patients

whose tumors expressed DSG2 (DSG2 positive) had worse
prognosis and higher recurrence risk than those with DSG2-
negative tumors. Together, these results show that dynamic
changes of DSG2 expression are required for breast tumorigene-
sis, CTC clustering, invasion, and metastasis. Our data also iden-
tify regulatory mechanisms underlying DSG2 repression and
derepression during specific stages of breast cancer progression.

Results
High Expression of DSG2 in Breast Cancer Is Associated with Poor
Prognosis and High Recurrence. To identify key factors driving
CTC clustering and metastasis, we analyzed a transcriptome
dataset for metastatic and nonmetastatic breast cancers from the
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Fig. 1. High DSG2 expression is positively correlated with metastasis and high recurrence risk in breast cancer patients. (A and B) GSEA-P enrichment plot (A)
and heat map (B) for the top 30 up-regulated genes for metastasis in metastatic (n = 7) versus nonmetastatic breast cancer patients (n = 15). Normalized
enrichment score (ES) and false discovery rate (FDR) q are listed on the enrichment plots. (C) (Left) Representative IHC of breast tumors classified as negative
(Upper; <10% of the tumor cells have detectable DSG2 staining) or positive (Lower; >10% of tumor cells with intense membrane staining) for DSG2 ex-
pression. Enlarged images are presented on Right. (Scale bar, 30 μm.) (D) Kaplan−Meier disease free survival (DFS) analysis of breast cancer patients grouped
by DSG2 expression. DSG2-positive group is indicated by red line (n = 113); DSG2-negative group is indicated by black line (n = 51). P = 0.004. The P value was
determined by log-rank test. (E) Comparison of recurrence rate between patients with DSG2-positive (>10% cells with DSG2 staining) vs. DSG2-negative
(<10% with DSG2 staining) tumors using χ2 test. P = 0.03. (F) Kaplan–Meier analysis of distant metastasis-free survival (DMFS) of patients with different levels
of DSG2 using a breast cancer cohort (Yau 2010 dataset) from the UCSC Xena public hub. Receiver operating characteristic (ROC) curve analysis was used to
determine the relative level of DSG2. P = 0.008. The P value was determined by log-rank test.
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Gene Expression Omnibus database using Gene Set Enrichment
Analysis (GSEA). Forty-six genes associated with metastatic
disease were enriched in metastatic breast cancers. Among these,
DSG2 was the most highly expressed (Fig. 1 A and B). Because
formation of CTC clusters (groups of two or more aggregated
CTCs) promotes metastasis and because cell−cell interaction is
critical for CTC clustering (9), we also analyzed genes associated
with cell−cell junctions and found DSG2 as the second most
highly expressed gene among 56 genes enriched in the metastatic
group (SI Appendix, Fig. S1 A and B). Overlap of these two gene
sets (metastasis and cell−cell junction) identified three genes (SI
Appendix, Fig. S1C). Among these, DSG2 was the most highly
up-regulated in the metastasis and cell−cell junction gene sets
that was also enriched in metastatic breast cancer patients.
We then evaluated clinical correlation of DSG2 expression with

prognosis using immunohistochemistry (IHC) analysis of 164 bi-
opsy specimens (Fig. 1C). Based on the IHC analysis, patients
were grouped into “DSG2-positive” and “DSG2-negative” groups
for Kaplan–Meier survival analyses. The disease-free survival was
significantly lower in the DSG2-positive group (Fig. 1D; P =
0.004). Importantly, DSG2 expression was highly correlated with
cancer recurrence (Fig. 1E; P = 0.03). To examine whether high
DSG2 expression promoted metastasis, we analyzed a breast
cancer cohort from the University of California, Santa Cruz
(UCSC) Xena public hub (Yau 2010 dataset) (24) and found
significantly lower distant metastasis-free survival in DSG2-high
breast cancer patients (Fig. 1F; P = 0.008). The results from
these three independent cohorts indicated that DSG2 possesses a
metastatic role in breast cancer and could be used as a
prognostic marker.

DSG2 Expression Is Required for CTC Clustering and Metastasis. To
determine DSG2 function in breast cancer progression, we first
examined endogenous DSG2 levels in a panel of cell lines (SI
Appendix, Fig. S2A). MB231, a model cell line for in vivo me-
tastasis studies due to its high metastatic potential (25), had the
highest level of DSG2 out of eight cell lines assayed. Suppression
of DSG2 expression in MB231 using a lentiviral short hairpin
RNA (shRNA) system (SI Appendix, Fig. S2B) led to depletion
of DSG2 from the cell membrane, as confirmed by fluorescence-
activated cell sorting (FACS) (SI Appendix, Fig. S2C). Also, we
confirmed that DSG2 was the only highly expressed DSG protein
in MB231 and SKBR3 cells (SI Appendix, Fig. S2D), and iden-
tified shRNAs that specifically depleted DSG2 while not af-
fecting DSG1 or DSG3 (SI Appendix, Fig. S2E).
These DSG2-depleted cells were then used to determine the

role of DSG2 in CTC clustering and metastasis by orthotopic
xenograft assays where EGFP-expressing MB231 cells, without
(shCtrl) or with (shDSG2) DSG2 depletion, were injected into
the fourth mammary fat pad of immunocompromised NOD/
SCIDγmice. Nine weeks after mammary fat pad injection, tumor
size, CTC counts, and lung nodules were evaluated (Fig. 2A).
Mice bearing shCtrl cell-derived, DSG2-expressing tumors (SI
Appendix, Fig. S2F) had more metastatic lung nodules compared
to the mice bearing shDSG2 cell-derived, DSG2-depleted tu-
mors (Fig. 2B). Moreover, IHC staining confirmed that the cells
from the shCtrl-derived lung tumors expressed DSG2 (Fig. 2 B,
Left and SI Appendix, Fig. S2F). Interestingly, we also observed a
fivefold higher prevalence of CTC clusters in the shCtrl group
(Fig. 2 C and D) than the shDSG2 group (278 clusters per gram
tumor in the shCtrl group versus 59 clusters per gram tumor in
the shDSG2 group). No significant difference in single CTC
numbers was found between shCtrl and shDSG2 group (Fig. 2 C
and D).
A syngeneic tumor mouse model was used to confirm that

similar DSG2-driven tumorigenic phenotypes also occurred in
immune-competent mice. Mouse mammary tumor cells labeled
with GFP luciferase (4T1-GFP/LUC) with or without DSG2

depletion (SI Appendix, Fig. S2G) were injected into the fourth
mammary fat pad of BALB/c mice (Fig. 2E). Consistent with the
MB231 xenograft model, shCtrl-injected syngeneic mice had
more lung metastasis with DSG2-expressing nodules than
shDSG2-injected mice (Fig. 2F and SI Appendix, Fig. S2H).
Importantly, blood of shCtrl-injected mice also had significantly
higher levels of both single CTCs and CTC clusters than blood
from the shDSG2 group (Fig. 2 G and H). This occurred despite
the fact that there was no significant difference in primary tumor
size between these two groups (SI Appendix, Fig. S2I). Together,
these data indicated that DSG2 facilitates breast cancer
metastasis.

DSG2 Expression Promotes Metastatic Colonization and Tumor
Growth. As colonization is a crucial step to determine whether
cancer cells can survive in distant organs (26, 27), we injected
SKBR3 cells, which also had high levels of endogenous DSG2
expression (SI Appendix, Fig. S2A), with or without DSG2 de-
pletion into mouse tail vein to examine whether DSG2 contrib-
utes to colonization ability. Fixation and hematoxylin and eosin
(H&E) staining of lung tissue 2 mo after the initial tail vein in-
jection showed that mice injected with DSG2-depleted SKBR3
cells had significantly lower numbers of lung nodules compared
to mice injected with control cells (Fig. 3A). Conversely, DSG2
overexpression in MB157 cells, which had low levels of endog-
enous DSG2 expression (SI Appendix, Fig. S2A), significantly
increased lung colonization (Fig. 3B).
In addition, DSG2 promoted tumor growth at the primary site.

DSG2 depletion led to significant reduction of colony forming
efficiency in soft agar colony forming (SACF) assays (Fig. 3C).
Conversely, DSG2 overexpression in MB157 and MB468 cells,
which had low endogenous DSG2 levels (SI Appendix, Fig.
S2 A–C), resulted in higher colony numbers (Fig. 3D). Consistent
with the tumorigenic role of DSG2 in promoting colony forma-
tion, orthotopic xenografts showed that tumors derived from
DSG2-depleted cancer cells were significantly smaller than the
control, while cells overexpressing DSG2 formed significantly
larger tumors (Fig. 3 E and F and SI Appendix, Fig. S2 J and K).
Together, these results demonstrated that DSG2 expression
promotes breast tumor growth at the primary site and increases
colonization in the distal organs.

Repression of DSG2 Promotes Cell Invasion, Migration, and
Expression of EMT Genes. Initiation of cancer metastasis, includ-
ing invasion, migration, and intravasation, relies heavily on tu-
mor cell dissemination (1, 28). Since DSG2 expression increased
CTC clusters and tumor growth in the mammary fat pad and also
promoted colonization in the lung, we next evaluated its role in
dissemination. Seemingly in contrast to its tumorigenic role,
DSG2 knockdown in MB231 cells significantly increased mi-
gration ability (SI Appendix, Fig. S3A), and DSG2 overexpression
in MB157 cells inhibited migration (SI Appendix, Fig. S3B).
Similarly, depletion of DSG2 increased cell invasion, whereas
overexpression of DSG2 inhibited this ability (SI Appendix, Fig.
S3 C and D. Consistent with these observations, DSG2 depletion
resulted in an up-regulation of EMT genes, including SNAIL,
SLUG, and VIMENTIN (VIM), all of which are critical for
cancer cell mobility and dissemination (29, 30). Conversely,
DSG2 overexpression down-regulated these genes (SI Appendix,
Fig. S3 E and F). Thus, DSG2 suppression may facilitate invasion
and migration not only by disrupting cell−cell adhesion but also
by up-regulating EMT genes to allow cancer cells to detach from
the primary tumor and intravasate into the circulatory system as
single cells.

Hypoxia-Induced HIF1α Suppresses DSG2 Expression. Since both
single CTCs and CTC clusters were detected in mice with DSG2-
expressing tumors (Fig. 2), DSG2 must be suppressed in some
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parts of the primary tumors to allow cancer cells to invade and
disseminate into the blood. To examine this hypothesis, we
performed IHC using breast cancer patient samples. A negative
correlation of expression pattern between DSG2 and CA9, a
hypoxic stress marker, across different tumor regions was ob-
served (Fig. 4 and SI Appendix, Fig. S4). DSG2 expression was
low in hypoxic regions with high CA9 expression (Fig. 4, red
boxes), but high in regions without CA9 staining (Fig. 4, blue
boxes). These results indicated that DSG2 expression may be
down-regulated under hypoxia.
Hypoxia plays a critical role in metastasis (2), but it is not known

whether hypoxia affects DSG2 expression. Consistent with the
pattern of DSG2 expression in tumor specimens, breast cancer
cells subjected to hypoxic stress had decreased DSG2 gene ex-
pression and protein level (Fig. 5 A and B). Similarly, DSG2 ex-
pression decreased in cells treated with different doses or
durations of the hypoxia-mimetic agent CoCl2 (Fig. 5C and SI
Appendix, Fig. S5A). Since HIF1α is a critical mediator of hypoxia-
associated cancer progression (31), we determined the effect of

HIF1α on DSG2 expression. Transient transfection of a nonde-
gradable HIF1α (P564A) in 293T cells resulted in down-regulation
of DSG2 (Fig. 5D). Importantly, depletion of HIF1α in 293T
treated with CoCl2 abolished hypoxia-induced DSG2 suppression
(Fig. 5E). The effect of HIF2α on DSG2 expression was also ex-
amined, since HIF2α can also be up-regulated and contribute to
cancer development under hypoxia (32). Unlike HIF1α, expres-
sion of nondegradable HIF2α (P531A) did not affect DSG2 ex-
pression (SI Appendix, Fig. S5B). Moreover, a depletion of HIF2α
in SKBR3 did not affect suppression of DSG2 during hypoxia (SI
Appendix, Fig. S5C). These results indicated that HIF1α is re-
sponsible for DSG2 suppression under hypoxic stress.
To further elucidate whether HIF1α directly suppressed DSG2

transcription, we used Integrated Motif Activity Response Anal-
ysis (ISMAR) (33) to identify putative HIF1α binding sites on the
DSG2 promoter and found that mutation of one of these sites
(−946 to −943) abolished HIF1α inhibition of DSG2 expression
(Fig. 5F). Chromatin immunoprecipitation (ChIP) further con-
firmed that hypoxia-induced HIF1α bound to this region (Fig. 5G
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primary tumors, and lung tissues were collected at 9 wk after injection. (B) Representative H&E staining of lung sections from mice orthotopically injected
with (Left) shCtrl or (Right) shDSG2 MB231-EGFP cells and quantification of lung nodule numbers in shCtrl and shDSG2 groups. Error bars indicate SD; P value
was determined by unpaired T test. (C) Representative images of CTCs from shCtrl or shDSG2 MB231-EGFP tumor-bearing mice captured by MiCareo on-chip
filtration and having positive immunofluorescence (IF) staining of DAPI, EGFR, and GFP to identify MB231-EGFP cells. (Scale bar, 25 μm.) (D) Numbers of single
CTCs and CTC clusters collected from pooled blood of shCtrl or shDSG2 MB231-EGFP tumor-bearing mice. Three mice per group were assayed. Data are CTC
counts ± 95% CIs. (E) Diagram of the syngeneic mouse model procedure. The 4Tl-GFP/LUC without (shCtrl) or with (shDSG2, #604) DSG2 depletion were
injected into fourth mammary fat pads of BALB/c mice. Primary tumors and lung tissues were collected at 3 wk after injection. (F) Bioluminescence imaging of
lung metastasis and quantitation of bioluminescence between shCtrl and shDSG2 groups. Four mice were used for each group. Data are means ± SD, with
significant difference determined by T test. (G) Representative images of CTCs from shCtrl or shDSG2 4T1-GFP/LUC tumor-bearing mice captured by MiCareo
on-chip filtration and having positive IF staining of DAPI, CD29, and GFP to identify 4T1-GFP/LUC cells. (Scale bar, 25 μm.) (H) Numbers of single CTCs and CTC
clusters collected from shCtrl- or shDSG2-transduced 4T1-GFP/LUC tumor-bearing mice. Four mice were used for each group. Data are means ± SD, with
significant differences based on unpaired T test (* indicates P < 0.05, ** indicates P < 0.01).
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and SI Appendix, Fig. S5D), and this HIF1α binding was associated
with increased H3K27 trimethylation (H3K27me3), indicative of
heterochromatin formation, during hypoxia (Fig. 5H).
This observation of HIF1α-mediated repression of DSG2 con-

trasted with the more typical function of HIF1α to promote ex-
pression of hypoxia-inducible genes (32). To understand how
HIF1α carried out this transcriptional suppression, we performed
coimmunoprecipitation (Co-IP) assays and found that stabilized
HIF1α interacted with polycomb repressive complex 2 compo-
nents, EZH2 and SUZ12, but not HDAC1 and HDAC2, in breast
cancer cells under hypoxia (Fig. 6A and SI Appendix, Fig. S5E).
This interaction was also confirmed using 293T cells ectopically
expressing the nondegradable HIF1α (P564A) (Fig. 6B). Impor-
tantly, depletion of EZH2 or SUZ12 significantly abolished
hypoxia-induced DSG2 suppression (Fig. 6C), indicating that
these PRC2 components are required for DSG2 down-regulation
under hypoxic stress. Together, these results suggested that HIF1α
may recruit EZH2 and SUZ12 to the DSG2 promoter to down-
regulate DSG2 expression under hypoxia.
To further investigate whether EZH2 and SUZ12 were

recruited to the DSG2 promoter by HIF1α under hypoxic stress,
we performed ChIP assays using cells with or without HIF1α
depletion (Fig. 6D). Upon CoCl2 treatment, HIF1α was induced
and recruited these corepressors to the HIF1α-binding region on
the DSG2 promoter in the shCtrl cells (Fig. 6E, gray bars).
However, the recruitment of EZH2 or SUZ12 was abolished in
HIF1α depleted cells under hypoxic stress (Fig. 6E, blue bars).
These results demonstrated that stabilized HIF1α is required to
recruit PRC2 complex to the DSG2 promoter to suppress DSG2
transcription under hypoxia.

Since DSG2 is critical for distant organ colonization and is
highly expressed in metastatic nodules (Figs. 2 and 3), DSG2
suppression that occurs in hypoxic conditions must be released
before colonization can occur. Consistent with this idea, dere-
pression of DSG2 expression was observed within 1 h after
SKBR3 cells were released from hypoxia in vitro (Fig. 6 F, Left).
Interestingly, the expression of DSG2 continued decreasing for
approximately 1 h after MB231 cells were released from hypoxic
stress (Fig. 6 F, Right). Nevertheless, reactivation of DSG2 ex-
pression occurred soon after that. To confirm that this reactivation
is important in vivo, we injected EGFP-expressing MB231 cells
into mammary fat pads and evaluated DSG2 expression in CTCs
after injection. Before injection, nearly all cells expressed DSG2
(98.6%; Fig. 6 G, Top). At 9 wk after injection, more than 90% of
CTCs disseminated from the primary tumor site expressed DSG2,
while 9% had low/nondetectable DSG2. Given our other obser-
vations, it seems likely that the cells with low or nondetectable
DSG2 had just been released from the primary tumor and un-
dergone intravasation (Fig. 6 G, Bottom). Taken together, our
in vitro and in vivo observations are all consistent with dynamic
regulation of DSG2 where hypoxia-mediated DSG2 suppression
followed by derepression of DSG2 when hypoxic stress is released
in the circulatory system is required for DSG2-promoted breast
cancer metastasis.

Discussion
Our study demonstrated that dynamic changes in DSG2 ex-
pression are important for breast tumorigenesis and malignancy
(Fig. 7). Expression of DSG2 not only facilitated breast tumor
growth in mammary tissue and colonization in lung, it also
promoted CTC collective migration in the circulatory system
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(Figs. 2 and 3). In hypoxic tumor regions, HIF1α-mediated
DSG2 suppression was critical for cancer cells to gain mobility,
detach from the primary tumor, and intravasate into the blood
(Fig. 7 and SI Appendix, Fig. S3).
Recent research has proposed two mechanisms describing how

CTCs form clusters to collectively migrate in the circulatory system.
One is that tumor cells intravasate as multicellular clusters via
plakoglobin-dependent intercellular adhesion into the blood (9). The
other is that individual tumor cells aggregate via CD44-
PAK2−mediated focal adhesion kinase (FAK) signaling after intra-
vasation (15). Since DSG2 is an integral component of desmosomes,
and its cytoplasmic tail binds to plakoglobin and plakophilins (34),
DSG2 may facilitate CTC clustering prior to intravasation through its
cell−cell adhesion function. Therefore, tumor regions where DSG2
expression is high may shed CTC clusters.
In contrast, hypoxic tumor regions where DSG2 is down-

regulated may more readily generate single CTCs. CTCs that
can survive in the circulatory system and colonize in distant or-
gans are thought to be cancer stem-like cells and are highly as-
sociated with metastasis (35, 36). We also observed that DSG2
expression promoted mammosphere formation and survival in a
low-attached culture system (SI Appendix, Fig. S6), suggesting
that DSG2 may contribute to CTC survival during circulation

and may help maintain cancer stemness. Consistent with this
notion, DSG2 has recently been identified as a marker for plu-
ripotent stem cells (PSCs) and is critical for PSC self-renewal
and reprogramming (37). These observations could partially
explain why there was no significant difference or even higher
single CTC numbers in mice bearing cancer cells with high
overall DSG2 level (shCtrl) compared to mice bearing DSG2-
depleted (shDSG2) cancer cells (Fig. 2 D and H). The shCtrl
group may have increased single CTCs due to intratumoral
hypoxia which locally repressed DSG2 expression. Since these
shCtrl single CTCs are able to reactivate DSG2 expression when
released from hypoxia, they may survive better in the blood.
However, the single CTCs generated from the shDSG2 tumors
cannot reactivate DSG2 expression and thus may have reduced
survival. Taken together, high DSG2 expression may allow CTC
clusters to remain intact and allow single CTCs to persist longer
in the circulatory system. Both of these scenarios can increase
the chance for colonization. It is also possible that DSG2 directly
promotes colonization and metastatic tumor growth via its roles
in cell adhesion.
Within a primary tumor, oxygen levels are spatially hetero-

geneous, leading to differences in hypoxia signaling. These dif-
ferences in hypoxia signaling may be maintained in CTCs after

2 mm

DSG2 CA9

100 um

A
Patient 1

DSG2 CA9

Patient 2

2 mm

100 um

B

Fig. 4. Negative correlation between hypoxia and DSG2 expression observed in clinical specimens for patients 1 (A) and 2 (B). Representative images of DSG2
and CA9 IHC staining using serial tumor sections from clinical breast cancer patients. Red boxes show enlarged images of low DSG2 but high CA9 expression
regions. Blue boxes show enlarged images of high DSG2 but low CA9 expression regions. (Scale bars, 2 mm or 100 μm as shown in the images.) Examples
shown are representative of 151 patient samples examined. Among the 151 samples, 66 slides contained DSG2high/CA9low cancer cells only, 40 slides contained
DSG2low/CA9low cancer cells only, and 45 slides contains both DSG2high/CA9low and DSG2low/CA9high cells in different regions.
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dissemination and intravasation via epigenetic mechanisms (38).
This may explain why differences in hypoxia signaling have been
shown to contribute to metastatic ability of clustered CTCs (39)
and microenvironment-dependent organ-specific metastasis
(40). Intriguingly, the majority of clustered CTCs from breast
tumors show up-regulated hypoxia signaling (39). DSG2 can be
down-regulated by hypoxia-induced HIF1α, but this transcrip-
tional regulation is dynamic and responsive to the local oxygen
level and thus may not fully explain the relationship between
hypoxia and metastatic ability of CTCs. Whether the hypoxia

signaling status of CTC clusters reflects their current local oxy-
gen level or is a remnant of hypoxia they experienced before
dissemination is not known. The balance between HIF1α and
DSG2 within the CTC clusters and how CTC clusters maintain
DSG2 expression while also exhibiting activated hypoxia signal-
ing is an important topic for further investigation.
In several cancers, HIF1α acts as a transcriptional activator to

up-regulate genes required for survival, EMT, angiogenesis, and
metastasis upon hypoxic stress (31, 32). HIF1α up-regulates
these target genes by recruiting coactivators such as p300/CBP

E

G

-435~-432-946~-943-1133~-1130

Mut-3

Mut-2
Mut-1
Wt

Lu
ci

fe
ra

se
 a

ci
tv

ity
  

(fo
ld

)

HIF1α.P564A
DSG2 promoter

-
Mut-1Wt

+
Wt Mut-2 Mut-3

+ ++

0

0.5

1.0

1.5
**

* *

C

D

#675 #677
CoCl2 - + + +

shHIF1 - -
0

0.4

1.2

0.8

293T

0

4

8

2

**
**

293T

pcDNA
HIF1α.P564A

+
-

-
+

R
el

at
iv

e 
D

S
G

2 
 E

xp
re

ss
io

n

GAPDH

HIF1

0

0.4

0.8

1.2
**

A

F

IgG HIF1

256

1

16
4

64

Fo
ld

 E
nr

ic
hm

en
t

ChIP:
HypoxiaNormoxia

***

1

H3K27me3IgG

2
3
4
5 ***

B

H

MB231

**

***

100 2000
0

0.5

1.0

1.5

0 100CoCl2 (μM)

R
el

at
iv

e 
D

S
G

2 
 E

xp
re

ss
io

n

0

0.5

1.0

1.5
SKBR3

100 2000

**

**

DSG2

HIF1

GAPDH
0 100

CoCl2: (μM)

1.0 0.4RE: 1.0 0.5

N H

R
el

at
iv

e 
D

S
G

2 
 E

xp
re

ss
io

n

SKBR3

HIF1

GAPDH

0

0.5

1.0

1.5
***

DSG2

MB231

N H
0

0.4

0.8

1.2 **

1.0 0.61.0 0.4RE:

2 4 6 10 2 4 6 10 hr
Normoxia Hypoxia

DSG2

HIF1

GAPDH

Fig. 5. HIF1α suppressed DSG2 expression under hypoxic stress. (A) The qRT-PCR analysis of DSG2 level in SKBR3 and MB231 cells under normoxia (N) or
hypoxia (H) for 16 h. Three independent experiments were performed, and data are means ± SD from one representative experiment (n = 3). Significant
differences are based on unpaired T test. DSG2 and HIF1α protein expression were detected by immunoblot with glyceraldehyde-3-phosphate dehydrogenase
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dependent experiments were performed, and data are means ± SD from one representative experiment (n = 3). Significant differences are based on unpaired
T test. Elevated HIF1α protein level confirmed that cells were experiencing hypoxic stress. DSG2 and HIF1α expression in cells in the unstressed control or
treated with 100 μM CoCl2 were detected by immunoblot with GAPDH as a loading control. Blots shown are from one representative experiment of three
replicates. (D) The qRT-PCR analysis of DSG2 level in 293T cells transiently transfected with control vector (pcDNA) or HIF1α−P564A plasmid. HIF1α expression
was detected by immunoblot with GAPDH as a loading control. Three independent experiments were performed, and data are means ± SD from one
representative experiment (n = 3). Significant differences are based on unpaired T test. (E) The qRT-PCR of DSG2 level in 293T cells transduced with shHIF1α
lentiviral vectors (clone #675 or #677) and treated with 100 μM CoCl2 for 24 h. Immunoblot of HIF1α shows that hypoxia-induced accumulation of HIF1α was
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promoter region containing putative HIF1α binding site (−946 nt to ∼−943 nt) in SKBR3 cells under normoxia or hypoxia. (H) ChIP-qPCR analysis of H3K27me3
on the same DSG2 promoter region as in G. For G and H, three independent experiments were performed, and data are means ± SD from one representative
experiment with significant differences detected by unpaired T test. (* indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.001.)
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acetyl transferase, CDK8 mediator, Potin, and SWI/SNF chro-
matin remodelers (41). In contrast, there is relatively little evi-
dence that HIF1α can also act as a transcription repressor. Under
hypoxia, stabilized HIF1α was found to displace the transcription
activator Myc from Sp1 binding to repress MutSα expression to
contribute to genomic instability in colon cancer cells (42). How-
ever, what corepressors HIF1α recruited to the target promoter
upon hypoxia was not known. Our observation that HIF1α

recruited EZH2 and SUZ12 to suppress DSG2 transcription (Figs.
5 and 6) provides a regulatory mechanism and expands the on-
cogenic role of HIF1α in promoting breast cancer progression.
Whether this HIF1α−EZH2−SUZ12 complex serves as a com-
mon gene suppression mechanism to facilitate cancer malignancy
in other cancer types is worthy of investigation.
Our clinical data and animal models clearly demonstrated that

DSG2 can be used as a prognostic marker for breast cancer.
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Interestingly, DSG2 expression is also associated with poor
prognosis in other cancers, including cervical, head and neck,
and lung cancers (SI Appendix, Fig. S7). This suggests a wide-
spread role of DSG2 in cancer malignancy. As a transmembrane
protein, DSG2 may be a druggable target. However, the strategy
has to be carefully designed. Using a monoclonal DSG2-specific
antibody to target the DSG2 to inhibit anchorage independent
growth may be possible. However, antibody-DSG2 internaliza-
tion may occur and result in enhancement of intravasation, as
down-regulation of DSG2 promotes invasion. In this case, a well-
designed antibody-cytotoxic drug conjugate (43) may be a more
effective therapeutic method to target DSG2-expressing cancer
cells. In addition, since DSG2-expressing CTCs tend to form
clusters which facilitate distant organ colonization, dialysis for
DSG2-expressing cancer cells in the blood may be another way

to inhibit metastasis. Alternatively, DSG2 may be used as a
specific marker for CTC cluster detection and isolation. Both the
underlying molecular mechanisms of DSG2-mediated tumori-
genesis and the possibility of using DSG2 as a cancer therapeutic
target are promising areas for further work.

Materials and Methods
Breast cancer specimens for IHC analysis were collected fromNational Taiwan
University Hospital. All specimens were encoded to protect patients under
protocols approved by the Institutional Review Board of Human Subjects
Research Ethics Committee of Academia Sinica (AS-IRB01-16031) and Na-
tional Taiwan University (201605057RINA), Taipei, Taiwan. Animal care and
experiments were approved by the Institutional Animal Care and Utilization
Committee of Academia Sinica (IACUC# 15-11-885). NOD/SCID mice were
kindly provided by Michael Hsiao, Genomics Research Center, Academia
Sinica, Taiwan, and BALB/c mice were purchased from the National Labo-
ratory Animal Center. Cancer cell lines including MB231, MB157, MB468,
SKBR3, and 4T1 were obtained from the American Type Culture Collection.
Human breast cancer cell lines were maintained in Dulbecco’s modified
Eagle’s medium, and mouse breast cancer cell line 4T1 was maintained in
RPMI medium supplemented with 10% fetal bovine serum and antibiotics
and cultured at 37 °C in a humidified incubator supplemented with 5% CO2.
For hypoxia experiments, medium was first incubated in HypoxyCOOL sys-
tem (Baker) for 8 h to reduce oxygen level to 1%. This medium was then
used to culture the cells in INVIVO 400 hypoxia chamber (Baker) supple-
mented with 5% CO2 and 1% O2 at 37 °C. Single CTC and clusters were
identified using a CTC platform from MiCareo, Inc. A spike-in control ex-
periment using 103 4T1-GFP/LUC cells mixed with 2 mL of blood from wild-
type BALB/c mice was performed to determine whether the centrifugation
step of CTC isolation increases cell aggregation (SI Appendix, Fig. S8). Fur-
ther details of experimental methods are given in SI Appendix, Materials
and Methods.

Data Availability. All study data are included in the article and SI Appendix.
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